Posts Tagged ‘Euclid’
Sách Cơ sở của Euclid
Euclid viết sách Cơ sở ở Alexandria khoảng 300 năm trước Công nguyên. Đây là thời kỳ Hellenistic của triết học cổ đại, thời kỳ mà triết học cổ đại đã lan toả tới những vùng đất chịu ảnh hưởng của văn hoá Hy lạp mà tiêu biểu là thành Alexandria bên bờ Phi của Địa trung hải. Nét chung của triết học thời kỳ Hellenistic, phần nào thể hiện trong sách Cơ sở, là tư duy đã đạt đến mức tinh tuý, nhưng có lẽ đã mất đi tính bay bổng của thời kỳ trước Socrates và sức mạnh tư duy của Plato, Socrates.
Người ta cho rằng hầu hết nội dung của sách Cơ sở được truyền lại từ những tiền nhân như Pythagoras, Plato, Eudoxus … Tuy nhiên, khác với Pythagoras và Plato, Euclid loại bỏ triệt để các yếu tố siêu hình được gán cho các số và các hình. Các số hữu tỉ không còn được coi là minh chứng cho sự hài hoà của vũ trụ, các khối đều trong không gian không còn được coi là ý niệm toán học nấp đằng sau các phạm trù siêu hình như kim thuỷ hoả thổ… Hệ thống suy luận logic xuất phát từ hệ tiên đề của Plato được Euclid sử dụng một cách triệt để, các chỉ tiêu về tính chặt chẽ của chứng minh được áp dụng một cách không khoan nhượng. Theo một nghĩa nào đó, Cơ sở là quyển sách thuần tuý toán học đầu tiên của nhân loại và là tờ giấy khai sinh ra toán học như một bộ môn độc lập, tuy vẫn còn là một bộ phận của triết học. Cách Euclid xây dựng một hệ thống kiến thức cao vút dưa trên số ít tiên đề nền và lấy luật logic làm chất gắn kết, đã là hình mẫu cho sự phát triển của toán học cho đến ngày hôm nay.
Trải qua 2400 năm, các mệnh đề phát biểu và chứng minh trong sách Cơ sở vẫn còn tươi tắn một cách đáng ngạc nhiên. Từ hình học tam giác mà chúng ta học những năm cấp hai, cho đến chứng minh tuyệt đẹp bằng phản chứng cho sự tồn tại vô hạn những số nguyên tố, từ thuật toán Euclid tìm ước số chung lớn nhất mà chúng ta vẫn phải học trong giáo trình cơ sở toán học trong tin học, cho đến chứng minh không tồn tại khối đều nào khác ngoài năm khối đều của Platon, đều là những nội dung đã được triển khai một cách đầy đủ trong sách Cơ sở.
Đấy có lẽ là những lý do tại sao Cơ sở được coi là một trong những quyển sách có ảnh hưởng nhất tới sự phát triển của văn minh nhân loại. Sách đã được tái bản hàng ngàn lần, số lần tái bản có lẽ chỉ thua Kinh thánh. Từ thời kỳ phục hưng cho đến đầu thế kỷ hai mươi, sách của Euclid được coi là một trong những quyển sách mà những người có học phải đọc.
Lớn lên từ Cơ sở, Toán học đã đi những bước rất xa. Bây giờ bạn có thể tìm được vô số sách toán với nhiều nội dung hơn, trình bày sáng sủa hơn sách của Euclid. Tuy vậy, tôi vẫn tin rằng người có học vẫn cần đọc Euclid vào một thời điểm nào đó trong cuộc đời mình, vẫn cần có Cơ sở đặt trên giá sách.
Cảm ơn nhà xuất bản Kim đồng và nhóm dịch giả đã đem sách Cơ sở của Euclid đến với độc giả Việt nam.